Click here to lớn get PDF tải về for all questions and answers of this chapter - NTA MOCK TESTS Class 12 NTA TPC JEE MAIN kiểm tra 100

Bạn đang xem: If 1 + sin x + sin^2 x+

m`), then number of solutions of the equation `n|sinx|=m|sinx| ` in `<0, 2pi>` is" title=" If `m, n in N`( `n> m`), then number of solutions of the equation `n|sinx|=m|sinx| ` in `<0, 2pi>` is" style="width:100%;"/>

If `m, n in N`( `n> m`), then number of solutions of the equation `n|sinx|=m|sinx| ` in `<0, 2pi>` is

Greatest value of `(sin^-1 x)^3+(cos^-1 x)^3 is m/n pi^3`, where m and n are relatively prime, then the value of mn is
Greatest value of `(sin^-1 x)^3+(cos^-1 x)^3 is m/n pi^3`, where m và n are relatively prime, then the value of mn is
` (where <.> denotes greatest integer function) . " style="width:100%;"/>
For a positive integer n, let `I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx` Find the value of `` (where <.> denotes greatest integer function) .
` (where <.> denotes greatest integer function) . " style="width:100%;"/>
For a positive integer n, let `I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx` Find the value of `` (where <.> denotes greatest integer function) .
` where <.> denotes greatest integer function. " style="width:100%;"/>
For a positive integer n, let `I _(n) int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx` Find the value of `` where <.> denotes greatest integer function.
Algebraic Expressions và IdentitiesComparing QuantitiesCubes và Cube RootsData HandlingDirect & Inverse Proportions
Areas of Parallelograms và TrianglesCirclesCoordinate GeometryHerons FormulaIntroduction khổng lồ Euclids Geometry
Areas Related lớn CirclesArithmetic ProgressionsCirclesCoordinate GeometryIntroduction to Trigonometry
Binomial TheoremComplex Numbers & Quadratic EquationsConic SectionsIntroduction lớn Three Dimensional GeometryLimits and Derivatives

Xem thêm: Đổi Mới Kiểm Tra Đánh Giá Học Sinh Phổ Thông Theo Cách Tiếp Cận Năng Lực

Application of DerivativesApplication of IntegralsContinuity and DifferentiabilityDeterminantsDifferential Equations